Respuesta :

Answer:

Therefore,

[tex]6r-r++(15-r)+23-6 = -3r+137[/tex] i.e

[tex]6r-r+8(15-r)+23-6[/tex]    and

[tex]-3r+137[/tex] are Equivalent .

Step-by-step explanation:

To Check:

[tex]6r-r+8(15-r)+23-6[/tex] and

[tex]-3r+137[/tex] is Equivalent or Not

Solution:

Consider,

[tex]6r-r+8(15-r)+23-6[/tex]  

Step 1 . Apply Distributive Property , A(B+C)=AB+AC we get

[tex]6r-r+8\times 15-8\times r+23-6[/tex]  

[tex]6r-r+120-8r+23-6[/tex]  

Step 2 . Combining Like Terms i.e r terms and the numbers we get

[tex]6r-r-8r+120+23-6[/tex]  

[tex]-3r+137[/tex]  

Which is Equivalent to the given expression

[tex]-3r+137[/tex]

Therefore,

[tex]6r-r+8(15-r)+23-6= -3r+137[/tex]   i.e

[tex]6r-r+8(15-r)+23-6[/tex]      and

[tex]-3r+137[/tex]                  ..........are Equivalent .