contestada

With what speed must a satellite be moving in order to maintain a
circular orbit 3360 km above the surface of the Earth?

Respuesta :

Answer: [tex]V=10891.39 m/s[/tex]

Explanation:

Since we are told the satellite movs in a circular orbit,  we can use the equation of velocity in the case of uniform circular motion:

[tex]V=\sqrt{G\frac{M}{r}}[/tex]

Where:

[tex]V=[/tex] is the velocity of the satellite

[tex]G=6.674(10)^{-11}\frac{m^{3}}{kgs^{2}}[/tex] is the Gravitational Constant

[tex]M=5.972(10)^{24} kg[/tex] is the mass of the Earth

[tex]r=3360 km \frac{1000 m}{1 km}=3360000 m[/tex] is the radius of the orbit

Solving with the given data:

[tex]V=\sqrt{6.674(10)^{-11}\frac{m^{3}}{kgs^{2}}\frac{5.972(10)^{24} kg}{3360000 m}}[/tex]

Finally:

[tex]V=10891.39 m/s[/tex]