The algebraic sum modelled by the tiles is (d)[tex](-x^2 + 2x + 3) + (-x^2 - 2x - 1) = -2x2 + 2[/tex]
From the figure, we have the result of the algebraic tiles to be:
[tex]-x^2 - x^2 + 1 + 1[/tex]
This gives
[tex]-2x^2 + 2[/tex]
Next, we test the options (A) through (D)
Option A
[tex](-x^2 + 2x + 3) - (x^2 - 2x - 1) = -2x^2 + 2[/tex]
Open the brackets
[tex]-x^2 + 2x + 3 - x^2 + 2x + 1 = -2x^2 + 2[/tex]
Evaluate the like terms
[tex]-2x^2 + 4x + 4 \ne -2x^2 + 2[/tex]
When the same is applied to the remaining options, we have:
Option B.
[tex](-x^2 + 2x + 3) - (-x^2 + 2x + 1) \ne -2x^2 + 2[/tex]
Option C
[tex](-x^2 + 2x + 3) + (-x^2 + 2x + 1) = -2x^2 + 2[/tex]
Option D
[tex](-x^2 + 2x + 3) + (-x^2 - 2x - 1) = -2x2 + 2[/tex]
Hence, the algebraic sum modelled by the tiles is (d) [tex](-x^2 + 2x + 3) + (-x^2 - 2x - 1) = -2x2 + 2[/tex]
Read more about algebraic tiles at:
https://brainly.com/question/26409801