Answer:
ω₂ = 1.9025 x 10⁻⁶ rad/s
Explanation:
given,
mass of star = 1.61 x 10³¹ kg
angular velocity = 1.60 x 10⁻⁷ rad/s
diameter suddenly shrinks = 0.29 x present size
r₂ = 0.29 r₁
using conservation of angular momentum
I₁ ω₁ = I₂ ω₂
[tex](\dfrac{2}{5}mr_1^2)\omega_1=(\dfrac{2}{5}mr2^2)\omega_2[/tex]
[tex]r_1^2\times \omega_1=r_2^2\times \omega_2[/tex]
[tex]r_1^2\times 1.60\times 10^{-7}=(0.29r_1)^2\times \omega_2[/tex]
[tex]1.60\times 10^{-7}=0.0841\times \omega_2[/tex]
[tex] \omega_2=\dfrac{1.60\times 10^{-7}}{0.0841}[/tex]
ω₂ = 1.9025 x 10⁻⁶ rad/s