Answer:
b. The sum of the squared deviations between each group mean and the mean across all groups
Step-by-step explanation:
Previous concepts
Analysis of variance (ANOVA) "is used to analyze the differences among group means in a sample".
The sum of squares "is the sum of the square of variation, where variation is defined as the spread between each individual value and the grand mean"
Solution to the problem
If we assume that we have [tex]p[/tex] groups and on each group from [tex]j=1,\dots,p[/tex] we have [tex]n_j[/tex] individuals on each group we can define the following formulas of variation:
[tex]SS_{total}=\sum_{j=1}^p \sum_{i=1}^{n_j} (x_{ij}-\bar x)^2 [/tex]
[tex]SS_{between}=SS_{model}=\sum_{j=1}^p n_j (\bar x_{j}-\bar x)^2 [/tex]
[tex]SS_{within}=SS_{error}=\sum_{j=1}^p \sum_{i=1}^{n_j} (x_{ij}-\bar x_j)^2 [/tex]
And we have this property
[tex]SST=SS_{between}+SS_{within}[/tex]
As we can see the sum of squares between represent the sum of squared deviations between each group mean and the mean across all groups.
[tex]SS_{between}=SS_{model}=\sum_{j=1}^p n_j (\bar x_{j}-\bar x)^2 [/tex]
So then the best option is:
b. The sum of the squared deviations between each group mean and the mean across all groups