A manufacturer wants to make open tin boxes from pieces of tin with dimensions 8 in. by 15 in. by cutting equal squares from the four corners and turning up the sides. Find the side of the square cutout that gives the box the largest possible volume.

0 in.
6 in.
52788.gif
52789.gif

Respuesta :

Answer:

[tex]\frac{5}{3}[/tex] in

Step-by-step explanation:

Let x be the side of square.

Length of box=8-2x

Width of box=15-2x

Height of box=x

Volume of box=[tex]L\times B\times H[/tex]

Substitute the values then we get

Volume of box=V(x)=[tex](8-2x)(15-2x)x=(15x-2x^2)(8-2x)[/tex]

[tex]V(x)=120x-30x^2-16x^2+4x^3[/tex]

[tex]V(x)=4x^3-46x^2+120x[/tex]

Differentiate w.r.t x

[tex]V'(x)=12x^2-92x+120[/tex]

[tex]V'(x)=0[/tex]

[tex]12x^2-92x+120=0[/tex]

[tex]3x^2-23x+30=0[/tex]

[tex]3x^2-18x-5x+30=0[/tex]

[tex]3x(x-6)-5(x-6)=0[/tex]

[tex](x-6)(3x-5)=0[/tex]

[tex]x-6=0\implies x=6[/tex]

[tex]3x-5=0\implies x=\frac{5}{3}[/tex]

Again differentiate w.r.t x

[tex]V''(x)=24x-92[/tex]

Substitute x=6

[tex]V''(6)=24(6)-92=52>0[/tex]

Substitute x=5/3

[tex]V''(5/3)=24(5/3)-92=-52<0[/tex]

Hence, the volume is maximum at x=[tex]\frac{5}{3}[/tex]

Therefore, the side of the square ,[tex]x=\frac{5}{3}[/tex] in cutout that gives the box the largest possible volume.