Answer:
[tex]\dfrac{3}{4}[/tex]
Explanation:
m = Mass of car
3m = Mass of truck
v = Velocity of car
[tex]\dfrac{1}{2}v[/tex] = Velocity of truck
r = Turn radius
Centripetal force is given by
For car
[tex]F_1=\dfrac{mv^2}{r}[/tex]
For truck
[tex]F_2=\dfrac{3m(\dfrac{1}{2}v)^2}{r}\\\Rightarrow F_2=\dfrac{3m\dfrac{1}{4}v^2}{r}[/tex]
Dividing the forces we get
[tex]\dfrac{F_1}{F_2}=\dfrac{\dfrac{mv^2}{r}}{\dfrac{3m\dfrac{1}{4}v^2}{r}}\\\Rightarrow \dfrac{F_1}{F_2}=\dfrac{4}{3}\\\Rightarrow F_2=\dfrac{3}{4}F_1[/tex]
So, the multiple of the original force is [tex]\dfrac{3}{4}[/tex]