contestada

Find the direction of the sum of
these two vectors:
3.14 m
30.0°
60.00
direction (deg)

Find the direction of the sum of these two vectors 314 m 300 6000 direction deg class=

Respuesta :

Answer:

Explanation:

To find the sum of vector, (C=A+B)we can descompose each of the vectors in the x & y coordinates.

vector A

A=3.14;30°

[tex]A_{x} = 3.14*cos(30) = 2.71[m]\\A_{y} = 3.14*sin(30) = 1.57[m][/tex]

vector B

B=2.71;-60

[tex]B_{x} = 2.71*cos(60) = 1.355[m]\\B_{y} = - 2.71*sin(60) = -2.35[m]\\[/tex]

Now we can sum each of the coordinates:

C = A + B

[tex]C = (2.71+1.355)_{x} + (1.57-2.35)_{y} \\C = 4.065 i - 0.78 j[/tex]

Those are the components of the vector, to find its magnitude we can use Pythagoras.

[tex]C = \sqrt{(4.065)^{2} +(0.78)^{2} } \\C = 4.13 [m]\\\\[/tex]

And the angle will be:

[tex]tan(\alpha ) = \frac{0.78}{4.065} \\\alpha = 10.86 [deg] below the horizontal[/tex]