Respuesta :

Answer:

Standard form: [tex]x^5-14x^4+83x^3-256x^2+406x-260[/tex]

Factored form with complex numbers: [tex](x-2)(x-(3+i))(x-(3-i))(x-(3-2i))(x-(3+2i))[/tex]

Factored form without complex numbers: [tex](x-2)(x^2-6x+10)(x^2-6x+13)[/tex]

Step-by-step explanation:

If the polynomial has real coefficients and a+bi is a zero, then a-bi zero.

This means the following:

1) Since 3+i is a zero, then 3-i is a zero.

2) Since 3-2i is a zero, then 3+2i is a zero.

So we have the following zeros:

1) x=2

2) x=3+i

3) x=3-i

4) x=3-2i

5) x=3+2i

If x=c is a zero of the polynomial, then x-c is a factor of the polynomial.

This implies the following:

1) x=2 is a zero => x-2 is a factor

2) x=3+i is a zero => x-(3+i) is a factor

3) x=3-i is a zero => x-(3-i) is a factor

4) x=3-2i is a zero => x-(3-2i) is a factor

5) x=3+2i is a zero => x-(3+2i) is a factor

Let's put our factors together:

[tex](x-2)(x-(3+i))(x-(3-i))(x-(3-2i))(x-(3+2i))[/tex]

Let's find the standard form for this polynomial.

This will require us to multiply the above out and simplify by combining any like terms.

Before we begin this process, I would rather have a quick way to multiply the factors that contain the congregate pair zeros.

[tex](x-(m+ni))(x-(m-ni))[/tex]

I'm going to use foil.

First: [tex]x(x)=x^2[/tex]

Outer: [tex]x(-(m-ni))=-(m-ni)x[/tex]

Inner: [tex]-(m+ni)(x)=-(m+ni)x[/tex]

Last: [tex]-(m+ni)(-(m-ni))=(m+ni)(m-ni)=m^2-n^2i^2=m^2-n^2(-1)=m^2+n^2[/tex]

(Note: [tex](a-b)(a+b)=a^2-b^2[/tex]; When multiplying conjugates, you just have to multiply the first terms of each and the last terms of each.)

------------------------------------Let's combine these terms:

[tex]x^2-(m-ni)x-(m+ni)x+m^2+n^2[/tex]

Distribute:

[tex]x^2-mx+nix-mx-nix+m^2+n^2[/tex]

Combine like terms:

[tex]x^2-2mx+m^2+n^2[/tex]

So the formula we will be using on the factors that contain conjugate pair zeros is:

[tex](x-(m+ni))(x-(m-ni))=x^2-2mx+m^2+n^2[/tex].

[tex](x-(3+i))(x-(3-i))=x^2-2(3)x+3^2+1^2[/tex]

[tex](x-(3+i))(x-(3-i))=x^2-6x+9+1[/tex]

[tex](x-(3+i))(x-(3-i))=x^2-6x+10[/tex]

[tex](x-(3+2i))(x-(3-2i))=x^2-2(3)x+3^2+2^2[/tex]

[tex](x-(3+2i))(x-(3-2i))=x^2-6x+9+4[/tex]

[tex](x-(3+2i))(x-(3-2i))=x^2-6x+13[/tex]

------------------------------------------------

So this is what we have now:

[tex](x-2)(x^2-6x+10)(x^2-6x+13)[/tex]

I'm going to multiply the last two factors:

[tex](x^2-6x+10)(x^2-6x+13)[/tex]

What we are going to do is multiply the first term in the first ( ) to every term in the second ( ).

We are also going to do the same for the second term in the first ( ).

Then the third term in the first ( ).

[tex]x^2(x^2)=x^4[/tex]

[tex]x^2(-6x)=-6x^3[/tex]

[tex]x^2(13)=13x^2[/tex]

[tex]-6x(x^2)=-6x^3[/tex]

[tex]-6x(-6x)=36x^2[/tex]

[tex]-6x(13)=-78x[/tex]

[tex]10(x^2)=10x^2[/tex]

[tex]10(-6x)=-60x[/tex]

[tex]10(13)=130[/tex]

--------------------------------Combine like terms:

[tex]x^4-12x^3+59x^2-138x+130[/tex]

-----------------------------------------------------------------

So now we have

[tex](x-2)(x^4-12x^3+59x^2-138x+130[/tex]

We are almost done.

We are going to multiply the first term in the first ( ) to every term in the second ( ).

We are going to multiply the second term in the first ( ) to every term in the second ( ).

[tex]x(x^4)=x^5[/tex]

[tex]x(-12x^3)=-12x^4[/tex]

[tex]x(59x^2)=59x^3[/tex]

[tex]x(-138x)=-138x^2[/tex]

[tex]x(130)=130x[/tex]

[tex]-2(x^4)=-2x^4[/tex]

[tex]-2(-12x^3)=24x^3[/tex]

[tex]-2(59x^2)=-118x^2[/tex]

[tex]-2(-138x)=276x[/tex]

[tex]-2(130)=-260[/tex]

----------------------------------------Combine like terms:

[tex]x^5-14x^4+83x^3-256x^2+406x-260[/tex]