Respuesta :
Answer:
The function will be: [tex]f(x) = -0.5x^{2} + 40x [/tex]
Step-by-step explanation:
This mathematical problem is all about quadratic equation in the form
[tex]f(x) = ax^{2} + bx + c[/tex], where we have to determine the values of unknowns such as a, b and c. We need three equations to determine three unknowns such as a, b, and c.
Using orders pairs from data table we can determine the values of a, b, and c.
As the table consists of four ordered pairs : (0, 0), (2, 78), (4, 152), (6, 222) and (8, 288).
Lets take the ordered pair (0, 0), and put the value in [tex]f(x) = ax^{2} + bx + c[/tex].
So,
[tex]f(x) = ax^{2} + bx + c[/tex]
[tex]0 = a(0)^{2} + b(0) + c[/tex]
[tex]c = 0[/tex]
Lets take the ordered pair (4, 152), and put the value in [tex]f(x) = ax^{2} + bx + c[/tex].
So,
[tex]f(x) = ax^{2} + bx + c[/tex]
[tex]152 = a(4)^{2} + b(4) + 0[/tex]
[tex]152 = 16a+ 4b + 0[/tex]
[tex]152 = 16a+ 4b[/tex]
Dividing the above equation by 4
[tex]38 = 4a+ b[/tex] → Equation (A)
Lets take the ordered pair (6, 222), and put the value in [tex]f(x) = ax^{2} + bx + c[/tex].
So,
[tex]f(x) = ax^{2} + bx + c[/tex]
[tex]222 = a(6)^{2} + b(6) + 0[/tex]
[tex]222 = 36a+ 6b + 0[/tex]
[tex]222 = 36a+ 6b[/tex]
Dividing the above equation by 6
[tex]37 = 6a+ b[/tex] → Equation (B)
Subtract Equation (B) i.e. [tex]38 = 4a+ b[/tex] from
Equation (A) i.e. [tex]38 = 4a+ b[/tex]
[tex]1 = -2a[/tex]
[tex]a = -0.5[/tex]
Entering the value of [tex]a = -0.5[/tex] in [tex]37 = 6a+ b[/tex]
[tex]37 = 6(-0.5)+ b[/tex]
[tex]37 = -3 + b[/tex]
[tex]b = 40[/tex]
Hence, the function will be: [tex]f(x) = -0.5x^{2} + 40x [/tex]
Keywords: quadratic equation, function
Learn more quadratic equation from brainly.com/question/4539566
#learnwithBrainly