What curve passes through the point ​(1 ​,2​) and has an arc length on the interval​ [2,6] given by Integral from 2 to 6 StartRoot 1 plus 64 x Superscript negative 6 EndRoot dx ​? What is the​ curve?

Respuesta :

Answer:

Step-by-step explanation:

Given

Length of curve

[tex]L=\int_{2}^{6}\sqrt{1+64x^{-6}}dx [/tex]

Length of curve is given by

[tex]L=\int_{a}^{b}\sqrt{1+\left ( \frac{\mathrm{d} y}{\mathrm{d} x}\right )^2}dx[/tex] over interval a to b

comparing two we get

[tex]\frac{\mathrm{d} y}{\mathrm{d} x}=8x^{-3}[/tex]

[tex]dy=8x^{-3}dx[/tex]

integrating

[tex]\int dy=\int 8x^{-3}dx[/tex]

[tex]y=-4x^{-2}+C[/tex]

Curve Passes through (1,2)

[tex]1=-4+C[/tex]

[tex]C=5[/tex]

curve is

[tex]y+\frac{4}{x^2}=5[/tex]