On an asteroid, the density of dust particles at a height of 3 cm is ~30% of its value just above the surface of the asteroid. Assuming the temperature is 20 K and the average dust-particle mass is 10-19 kg. Estimate the gravitational acceleration on the asteroid.a. 2 m/s^2b. 10 m/s^2c. 0.1m/s^2

Respuesta :

From the law of atmosphere

[tex]N_v(y) = n_0*e^{-\frac{mgy}{Kb*T}}[/tex]

Where

[tex]n_0[/tex] = constant and is number density where the height y = 0cm

[tex]n_V[/tex] = Number density at height y=3cm

Kb = Boltzmann constant [tex]= 1.38*10^{-23}J/K[/tex]

[tex]T=20K[/tex]

[tex]m = 10^{-19}kg[/tex]

Re-arranging the equation to have the value of the gravity,

[tex]\frac{N_v(y)}{n_0} = e^{-\frac{mghy}{KbT}}[/tex]

[tex]ln(\frac{N_v(y)}{n_0}) = -\frac{mgy}{KbT}[/tex]

Since it is 30% of value above surface, therefore [tex]N_v = 0.3n_0[/tex]

[tex]ln(\frac{0.3n_0}{n_0}) = -\frac{mgy}{KbT}[/tex]

[tex]g = -\frac{KbT ln(0.3)}{my}[/tex]

[tex]g = -\frac{(1.38*10^{-23}J/K)(20K)(Ln(0.3))}{10^{-19}(3*10^{-2})}[/tex]

[tex]g = \frac{1.38*2*ln(0.3)*10^{-22}}{3*10^{-4}}[/tex]

[tex]g = 1.104*10^{-1}m/s^2[/tex]

[tex]g = 0.1m/s^2[/tex]

Therefore the correct answer is C.