Answer:
a)[tex]\pm 1.745[/tex]
b)[tex]\pm 1.795[/tex]
c)[tex]\pm 2.807[/tex]
d)[tex]\pm 2.796[/tex]
Step-by-step explanation:
We are given the following information in the question:
Confidence interval: Â
[tex]\bar{x} \pm t_{critical}\displaystyle\frac{s}{\sqrt{n}}[/tex]
We have to find the appropriate t critical values for each of the following confidence levels and sample sizes:
a) 90% confidence, n = 17
Degree of freedom = n - 1 = 16
[tex]t_{critical}\text{ at degree of freedom 16 and}~\alpha_{0.10} = \pm 1.745[/tex]
b) 90% confidence, n = 12
Degree of freedom = n - 1 = 11
[tex]t_{critical}\text{ at degree of freedom 11 and}~\alpha_{0.10} = \pm 1.795[/tex]
c) 99% confidence, n = 24
Degree of freedom = n - 1 = 23
[tex]t_{critical}\text{ at degree of freedom 23 and}~\alpha_{0.01} = \pm 2.807[/tex]
d) 99% confidence, n = 25
Degree of freedom = n - 1 = 24
[tex]t_{critical}\text{ at degree of freedom 24 and}~\alpha_{0.01} = \pm 2.796[/tex]