Respuesta :

The wavelength is 91.5 pm ( 91.5 Pico meter).

Explanation:

The formula can be expressed below for electron’s energy,

            [tex]\text {Energy of electron}=\frac{p^{2}}{2 m}[/tex]

Where,

p = momentum

m= mass of electron

We know, mass of electron =  [tex]9.1 \times 10^{-31} \mathrm{kg}[/tex]

Energy of electron, [tex]1 e V=1.6 \times 10^{-19} \mathrm{J}[/tex]

Therefore, [tex]\text { energy of electron, 180 eV }=180 \times 1.6 \times 10^{-19} J[/tex]

By substituting the known values in the equation, we get,

          [tex]180 \times 1.6 \times 10^{-19}=\frac{p^{2}}{2 \times 9.1 \times 10^{-31}}[/tex]

          [tex]p^{2}=180 \times 1.6 \times 10^{-19} \times 2 \times 9.1 \times 10^{-31}[/tex]

          [tex]p^{2}=5241.6 \times 10^{-50}[/tex]

Taking square root, we get

          [tex]\text {Momentum, } p=72.399 \times 10^{-25} \mathrm{kg} . \mathrm{m} / \mathrm{s}[/tex]

We know,

               [tex]\lambda=\frac{h}{p}[/tex]

Here, h – Planck constant = [tex]6.626 \times 10^{-34} \mathrm{J.s}[/tex]

So, the wavelength would be,

              [tex]\lambda=\frac{6.626 \times 10^{-34}}{72.399 \times 10^{-25}}=0.0915 \times 10^{-34+25}=0.0915 \times 10^{-9} \mathrm{m}[/tex]

Adding [tex]10^{-3}[/tex]  in both numerator and denominator we get the value as

              [tex]\lambda=0.0915 \times 10^{-9} \times \frac{10^{-3}}{10^{-3}}=0.0915 \times 10^{3} \times 10^{-12}=91.5 \mathrm{pm}[/tex]

Where, pm – Pico meter - [tex]10^{-12}[/tex]