An element crystallizes in a face centered cubic lattice and has a density of 1.45 g cm-3 . The edge of its unit cell is 4.52 x 10-8cm.
a) How many atoms are in each unit cell?
b) What is the volume of a unit cell?
c) What is the mass of a unit cell?
d) Calculate the approximate atomic mass of the element.

Respuesta :

Answer:

a) Four atoms.

b) 9.23 x 10⁻²³ cm³ .

c)  1.34 x 10⁻²² g .

d) 80.7 amu .

Explanation:

a) In the face-centered cubic cell, there are spheres (which represent atoms or molecules) at the center of each of the six faces of the cube, in addition to eight corner spheres. A face-centered cubic cell contains the equivalent of four complete spheres or atoms—three from  the six face-centered atoms and one from the eight shared corner spheres.

b)  The volume of a cube is [tex]V = a³[/tex], a being the edge length.

    Therefore V= (4.52 x 10⁻⁸ cm)³ = 9.23 x 10⁻²³ cm³

c) We know that δ= m ÷ v  

In the problem we are given the density and we just calculated the volume. We rearrange the equation to give:

m= δ × v = 9.23 × 10⁻²³ × 1.45 g/cm⁻³ = 1.34 x 10⁻²² g

d) We know the molar mass of carbon-12 is 12.00 g and there are 6.022 × 10²³ carbon-12 atoms in 1 mole of the substance; therefore,  the mass of one carbon-12 atom is given by :

12.00 g carbon-12 atoms ÷ 6.022 × 10²³ carbon-12 atoms= 1.993 x 10⁻²³ g

We can use this result to determine the relationship between atomic

mass units and grams. Because the mass of every carbon-12 atom is exactly 12 amu,  the number of atomic mass units equivalent to 1 gram is                                

amu/gram= 12 amu/1 carbon-12 atom × 1 carbon-12 atom/ 1.993 x 10⁻²³ g

amu/ gram= 6.022 x 10²³ amu/g

Thus, 1 g= 6.022 x 10²³ amu, and 1 amu = 1.661 x10⁻²⁴ g

To calculate the approximate atomic mass, we use the last conversion factor:

1.34 x 10⁻²² g × 1 amu/ 1.661 x10⁻²⁴ g = 80.7 amu

In the given fcc element,  a. the number of atoms is 4. b. The volume of a unit cell is [tex]\rm 9.23\;\times\;10^-^2^3\;cm^3[/tex]. c. Mass of unit cell is [tex]\rm 1.34\;\times\;10^-^2^2\;g[/tex]. d. The approximate atomic mass of the element is 80.7 amu.

  • The face-centered cubic lattice has 3 atoms from the 6 faces, and 1 atom from the eight corners. Thus, the total atoms in the face-centered lattice are four.

  • The face-centered lattice has been a cube.

The volume of cube = [tex]\rm (edge)^3[/tex]

The volume of unit cell = [tex]\rm (4.52\;\times\;10^-^8\;cm)[/tex]

The volume of unit cell = [tex]\rm 9.23\;\times\;10^-^2^3\;cm^3[/tex]

  • The mass of a unit cell can be calculated from density. Mass can be defined as the ratio of volume to density.

Mass = [tex]\rm \dfrac{volume}{density}[/tex]

Mass of unit cell = [tex]\rm \dfrac{9.23\;\times\;10^-^2^3\;cm^3}{1.45\;g\;cm^-^3}[/tex]

Mass of unit cell = [tex]\rm 1.34\;\times\;10^-^2^2\;g[/tex].

  • The approximate atomic mass of the element can be calculated by the mass of the carbon atom.

Mass of 1 carbon atom = [tex]\rm \dfrac{mass\;of\;1\;mole\;carbon}{number\;of\;atoms\;in\;1\;mole\;Carbon}[/tex]

Mass of 1 carbon atom = [tex]\rm \dfrac{12}{6.023\;\times\;10^2^3}[/tex]

Mass of 1 carbon atom = 1.992 [tex]\rm \times\;10^-^2^3[/tex] grams.

atomic mass unit per gram can be given as;

amu/gram = [tex]\rm \dfrac{12}{1.992\;\times\;10^-^2^3}[/tex]

amu/gram = [tex]\rm 6.022\;\times\;10^2^3[/tex] amu/gram

1 gram = [tex]\rm 6.022\;\times\;10^2^3[/tex] amu

1 amu = 1.661 [tex]\rm \times\;10^-^2^4[/tex] gram.

The average atomic mass = mass of unit cell [tex]\times[/tex] amu\gram

= [tex]\rm 1.34\;\times\;10^-^2^2\;g[/tex]. [tex]\times[/tex] 1 amu/ 1.661 [tex]\rm \times\;10^-^2^4[/tex] gram.

= 80.7 amu.

In the given fcc element,  a. the number of atoms is 4. b. The volume of a unit cell is [tex]\rm 9.23\;\times\;10^-^2^3\;cm^3[/tex]. c. Mass of unit cell is [tex]\rm 1.34\;\times\;10^-^2^2\;g[/tex]. d. The approximate atomic mass of the element is 80.7 amu.

For more information about the  face-centered cubic lattice, refer to the link:

https://brainly.com/question/14578576