Answer:
[tex]s_e=\sqrt{\frac{2GM_e}{R_e^2}}[/tex]
Explanation:
In this case mechanical energy is conserved, which means that the sum of the initial kinetic energy and initial potential gravitational energy will be equal to the sum of the final kinetic energy and final potential gravitational energy:
[tex]K_i+U_i=K_f+U_f[/tex]
Which in our case will be:
[tex]\frac{mv_i^2}{2}+\frac{-GM_em}{r_i^2}=\frac{mv_f^2}{2}+\frac{-GM_em}{r_f^2}[/tex]
Which, since [tex]v_i=0m/s[/tex], [tex]r_i=infinity[/tex], [tex]r_f=R_e[/tex], [tex]v_f=s_e[/tex] and canceling m means that:
[tex]\frac{s_f^2}{2}=\frac{GM_e}{R_e^2}[/tex]
Solving for the final velocity we get:
[tex]s_e=\sqrt{\frac{2GM_e}{R_e^2}}[/tex]