Respuesta :
To solve this problem it is necessary to apply the concepts related to Magnetic field in a toroide.
By definition the magnetic field is defined as
[tex]B = \frac{\mu_0 NI}{2\pi r}[/tex]
Where,
[tex]\mu_0 =[/tex] Permeability constant in free Space
N = Number of loops
I = Current
r = Radius
PART A) For the internal radio,
[tex]B = \frac{4\pi*10^{-7}(800)(17*10^3)}{2\pi 0.7}[/tex]
[tex]B = 3.8857T[/tex]
PART B) For outside radio,
[tex]B = \frac{4\pi*10^{-7}(800)(17*10^3)}{2\pi *1.3}[/tex]
[tex]B = 2.0923T[/tex]
Answer:
(a) 3.886 tesla
(b) 2.09 tesla
Explanation:
inner radius, r = 0.7 m
outer radius, R = 1.3 m
current, i = 17 kA = 17000 A
Number of turns, N = 800
(a) The magnetic field is given by
[tex]B=\frac{\mu _{0}}{2\pi }\times N\times \frac{i}{r}[/tex]
[tex]B=\frac{2 \times 10^{-7}\times 800 \times 17000}{0.7}[/tex]
B = 3.886 tesla
(b) The magnetic field is given by
[tex]B=\frac{\mu _{0}}{2\pi }\times N\times \frac{i}{R}[/tex]
[tex]B=\frac{2 \times 10^{-7}\times 800 \times 17000}{1.3}[/tex]
B = 2.09 tesla