Answer:
Answer:
mass of package, m = 3 kg
Explanation:
initial position, [tex]\overrightarrow{r_{1}}=0.5\widehat{i}+0.75\widehat{j}+0.2\widehat{k}[/tex]
Final position,
[tex]\overrightarrow{r_{2}}=7.8\widehat{i}+12.5\widehat{j}+7.4\widehat{k}[/tex]
time, t = 11 s
Force,
[tex]\overrightarrow{F}=2\widehat{i}+4\widehat{j}+6\widehat{k}[/tex]
Work done,
[tex]W = \overrightarrow{F}.\overrightarrow{d}[/tex]
where, d = r2 - r1
[tex]\overrightarrow{d}=\left ( 7.8-0.5 \right )\widehat{i}+\left ( 12.5-0.75 \right )\widehat{j}+\left ( 7.4-0.2 \right )\widehat{k}[/tex]
[tex]\overrightarrow{d}=7.3\widehat{i}+11.75\widehat{j}+7.2\widehat{k}[/tex]
W = [tex]\left ( 2\widehat{i}+4\widehat{j}+6\widehat{k}\right ).\left (\overrightarrow{d}=7.3\widehat{i}+11.75\widehat{j}+7.2\widehat{k} \right )[/tex]
W = 104.8 J
Power = Work / time
P = 104.8 / 11 = 9.53 Watt
Explanation: