Consider F and C below. F(x, y, z) = 2xz + y2 i + 2xy j + x2 + 9z2 k C: x = t2, y = t + 3, z = 3t − 1, 0 ≤ t ≤ 1 (a) Find a function f such that F = ∇f. f(x, y, z) = (b) Use part (a) to evaluate C ∇f · dr along the given curve C.

Respuesta :

Answer:

a)∇f = 2y + 2x + 18z

b) [tex]\int\limits^._C {F} \, dr[/tex] =108

Step-by-step explanation:

Given:

f (x,y,z ) = [tex](2xz+ y^{2})i + (2xy) j +(x^{2} + 9z^{2})k[/tex]

The curve C :

[tex]x=t^{2} ,\\y= t+3\\z= 3t-1[/tex]

where 0 ≤ t ≤ 1

Required:

(a) F = ∇f =? (F is a vector here)

(b) [tex]\int\limits^._C {F} \, dr[/tex] =?

Solution

First we will find the directional derivative F = ∇f

for that , we will use the formula :

∇f = [tex]F_{x}i+ F_{y} j+F_{z}k[/tex]

Fx= δf/δx = δ/δx [tex](2xz+ y^{2})i[/tex] = 2z i

Fy= δf/δy=δ/δy (2xy)j = 2x j

Fz= δf/δz=δ/δz[tex](x^{2} + 9z^{2})k[/tex] = 18z k

∇f = (2z) i .i + (2x) j.j + (18z) k.k

∇f = 2z + 2x + 18z

For part b):

we will use line integral formula:

[tex]\int\limits^._C {F} \, dr[/tex]

to calculate dr, we will need the curve C:

r = x(t)+y(t)+z(t)

r=[tex](t^{2})i + (t+3) j +(3t-1) k[/tex]

[tex]\frac{dr}{dt}=\frac{dx}{dt} +\frac{dy}{dt} + \frac{dz}{dt}[/tex]

[tex]\frac{dx}{dt} = 2t[/tex]

[tex]\frac{dy}{dt} = 1[/tex]

[tex]\frac{dz}{dt} = 3[/tex]

[tex]\int\limits^._C {F} \, dr[/tex] = [tex]\int\limits^1_0 {F_{x} } \, dx+ F_{y} dy +F_{z} dz[/tex]

= [tex]\int\limits^1_0 {(2z(2t) + 2x(1) + 18z (3)} \, )[/tex]

put values of y, x and z

= [tex]\int\limits^1_0 {2(3t-1) + 2(t^{2}) +18 (3) (3t-1)} \,[/tex]

=[tex]{2t^{2} + 6t+162t -54-2}\, |^1_0[/tex]

=[tex]{ 2t^{2}+ 168t - 56} \,|^1_0[/tex]               (Note : f(1)-f(0))

=2(1)+162(1)+2(0)+162(0)-56

= 2+162 -56

[tex]\int\limits^._C {F} \, dr[/tex] =108