Answers:
a) 13 s
b) 0.362 m/s
Explanation:
We have the following data:
[tex]m=660000 kg[/tex] is the mass of the mass damper
[tex]L=42 m[/tex] is the length of the pendulum
[tex]A=75 cm \frac{1m}{100 cm}=0.75 m[/tex] is the amplitude
This can be solved by the following equation:
[tex]T=2 \pi \sqrt{\frac{L}{g}}[/tex] (1)
Where:
[tex]T[/tex] is the period
[tex]g=9.8 m/s^{2}[/tex] is the acceleration due gravity
[tex]T=2 \pi \sqrt{\frac{42 m}{9.8 m/s^{2}}}[/tex] (2)
[tex]T=13 s[/tex] (3)
The velocity in a pendulum is maximum [tex]V_{max}[/tex] when the pendulum is in its mean position and the amplitude is maximum. So, the equation in this case is:
[tex]V_{max}=A \frac{2 \pi}{T}[/tex] (4)
[tex]V_{max}=0.75 m \frac{2 \pi}{13 s}[/tex] (5)
[tex]V_{max}=0.362 m/s[/tex]