Answer:
Temperature will be 305 K
Explanation:
We have given The asteroid has a surface area [tex]A=7.70m^2[/tex]
Power absorbed P = 3800 watt
Boltzmann constant [tex]\sigma =5.67\times 10^{-8}Wm/K^4[/tex]
According to Boltzmann rule power radiated is given by
[tex]P=\sigma AT^4[/tex]
[tex]3800=5.67\times 10^{-8}\times 7.70\times T^4[/tex]
[tex]T^4=87.0381\times 10^8[/tex]
[tex]T=305K[/tex]
So temperature will be 305 K