A skier is moving down a snowy hill with an acceleration of 0.40 m/s2. The angle of the slope is 5.0∘ to the horizontal. What is the acceleration of the same skier when she is moving down a hill with a slope of 10 ∘? Assume the coefficient of kinetic friction is the same in both cases.

Respuesta :

Answer:

1.25377 m/s²

Explanation:

m = Mass of person

g = Acceleration due to gravity = 9.81 m/s²

[tex]\mu[/tex] = Coefficient of friction

[tex]\theta[/tex] = Slope

From Newton's second law

[tex]mgsin\theta-f=ma\\\Rightarrow mgsin\theta-\mu mgcos\theta=ma\\\Rightarrow \mu=\frac{gsin\theta-a}{gcos\theta}\\\Rightarrow \mu=\frac{9.81\times sin5-0.4}{9.81\times cos5}\\\Rightarrow \mu=0.04655[/tex]

Applying [tex]\mu[/tex] to the above equation and [tex]\theta=10^{\circ}[/tex]

[tex]mgsin\theta-\mu mgcos\theta=ma\\\Rightarrow a=gsin\theta-\mu gcos\theta\\\Rightarrow a=9.81\times sin10-0.04655\times 9.81\times cos10\\\Rightarrow a=1.25377\ m/s^2[/tex]

The acceleration of the same skier when she is moving down a hill is 1.25377 m/s²