Answer:
(a). The angular frequency is 9.48 rad/s.
(b). The value of Ф is 0.8644 radian.
Explanation:
Given that,
Mass m= 1.5 kg
Spring constant = 135 N/m
Distance = 0.45 m
Speed = 5 m/s
[tex]y_{0}=0.45[/tex]
The position function is
[tex]y(t)=A\cos(\omega t-\phi)[/tex]
(a). We need to calculate the angular frequency of the oscillation
Using formula of angular frequency
[tex]\omega=\sqrt{\dfrac{k}{m}}[/tex]
Where, k = spring constant
m = mass
Put the value into the formula
[tex]\omega=\sqrt{\dfrac{135}{1.5}}[/tex]
[tex]\omega=9.48\ rad/sec[/tex]
(b). We need to calculate the value of φ
Using given position function
[tex]y(t)=A\cos(\omega t-\phi)[/tex]
[tex]y'(t)=v(t)=-A\omega\sin(\omega t-\phi)[/tex]
At t = 0,
[tex]y(0)=A\cos(-\phi)[/tex]
[tex]0.45=A\cos(-\phi)[/tex]...(I)
At t = 0, v(0) =5 m/s
[tex]5=-A\omega\sin(-\phi)[/tex]....(II)
Divide equation (II) by equation (I)
[tex] \dfrac{5}{0.45}=9.48\tan\phi[/tex]
[tex]\phi=\tan^{-1}(\dfrac{5}{0.45\times9.48})[/tex]
[tex]\phi=0.8644\ radian[/tex]
Hence, (a). The angular frequency is 9.48 rad/s.
(b). The value of Ф is 0.8644 radian.