Respuesta :

Answer:

The maximum height of the baseball is 9 feet

Step-by-step explanation:

we have

[tex]p(t)=\frac{1}{2}gt^2+v_0t+p_0[/tex]

where

p(t) ----> baseball position above the ground in feet

t ----> the time in seconds

v_0 ----> is the initial velocity in ft/sec

p_0 ---> initial position above the ground

we have

[tex]g=-32\frac{ft}{sec^2} \\\\v_0=16\frac{ft}{sec}\\\\p_0=5\ ft[/tex]

substitute the given values

[tex]p(t)=\frac{1}{2}(-32)t^2+16t+5[/tex]

[tex]p(t)=-16t^2+16t+5[/tex]

This is the equation of a vertical parabola open downward

The vertex represent a maximum

Convert the quadratic equation in vertex form

[tex]p(t)=-16t^2+16t+5[/tex]

Factor -16 leading coefficient

[tex]p(t)=-16(t^2-t)+5[/tex]

Complete the square

[tex]p(t)=-16(t^2-t+\frac{1}{4})+5+4[/tex]

[tex]p(t)=-16(t^2-t+\frac{1}{4})+9[/tex]

Rewrite as perfect squares

[tex]p(t)=-16(t-\frac{1}{2})^2+9[/tex]

The vertex is the point (0.5,9)

The maximum height of the baseball above the ground is the y-coordinate of the vertex

therefore

The maximum height of the baseball is 9 feet