Answer:
I = 20 i ^ N s
Explanation:
For this problem let's use the Impulse equation
I = Δp = m [tex]v_{f}[/tex]- v₀
The impulse and the velocity are vector quantities, let's calculate on each axis, let's decompose the velocity
cos 60 = vₓ / v
vₓ = v cos 60
sin60 = [tex]v_{y}[/tex] / v
[tex]v_{y}[/tex] = v sin60
vₓ = 10 cos 60
[tex]v_{y}[/tex] = 10 sin60
vₓ = 5.0 m / s
[tex]v_{y}[/tex] = 8.66 m / s
Let's calculate the impulse on each axis
X axis
Iₓ = m [tex]v_{xf}[/tex] - m vₓ₀
How the ball bounces
[tex]v_{xf}[/tex] = - vₓ₀ = vₓ
Iₓ = 2 m vₓ
Iₓ = 2 2 5
Iₓ = 20 N s
Y axis
[tex]I_{y}[/tex] = m [tex]v_{yf}[/tex] - m vyo
On the axis and the ball does not change direction so
[tex]v_{yf}[/tex] = vyo
[tex]I_{y}[/tex] = 0
The total momentum is
I = Iₓ i ^ + [tex]I_{y}[/tex] j ^
I = 20 i ^ N s