Respuesta :
Answer:
The correct option is: e. 2C(s, graphite) + 2H₂(g) → C₂H₄ (g)
Explanation:
The standard enthalpy of the reaction ([tex]\Delta H_{r}^{\circ}[/tex]) is the change in enthalpy associated with a given chemical reaction. It can be calculated by the standard enthalpies of formation of the products and reactants.
[tex]\Delta H_{r}^{\circ} = \sum \Delta H_{f}^{\circ} (Products) - \sum \Delta H_{f}^{\circ} (reactants)[/tex]
The standard enthalpy of formation ([tex]\Delta H_{f}^{\circ}[/tex]) of an elements that is present in its standard state is zero.
Therefore,
a. H₂O (l) + 1/2 O₂ (g) → H₂O₂(l)
[tex]\Delta H_{r}^{\circ} = \left [\Delta H_{f}^{\circ} (H_{2}O_{2}, l) \right ] - \left [\Delta H_{f}^{\circ} (H_{2}O, l)+ 1/2\times \Delta H_{f}^{\circ} (O_{2}, g)\right][/tex]
Here, the [tex]\Delta H_{f}^{\circ} (O_{2}, g) = 0 kJ/mol[/tex]
→ [tex]\Delta H_{r}^{\circ} = \left [\Delta H_{f}^{\circ} (H_{2}O_{2}, l) \right ] - \left [\Delta H_{f}^{\circ} (H_{2}O, l)\right] \neq \Delta H_{f}^{\circ} (Products)[/tex]
b. N₂ (g) + O₂ (g) → 2NO (g)
[tex]\Delta H_{r}^{\circ} = \left [2\times \Delta H_{f}^{\circ} (NO, g) \right ] - \left [\Delta H_{f}^{\circ} (N_{2}, g)+\Delta H_{f}^{\circ} (O_{2}, g)\right][/tex]
Here, the [tex]\Delta H_{f}^{\circ} (O_{2}, g) = \Delta H_{f}^{\circ} (N_{2}, g)= 0 kJ/mol[/tex]
→ [tex]\Delta H_{r}^{\circ} = \left [2\times \Delta H_{f}^{\circ} (NO, g) \right ] \neq \Delta H_{f}^{\circ} (Product, NO)[/tex]
c. 2H₂ (g) + O₂ (g) → 2H₂O (g)
[tex]\Delta H_{r}^{\circ} = \left [2\times \Delta H_{f}^{\circ} (H_{2}O, g) \right ] - \left [2\times \Delta H_{f}^{\circ} (H_{2}, g)+\Delta H_{f}^{\circ} (O_{2}, g)\right][/tex]
Here, the [tex]\Delta H_{f}^{\circ} (O_{2}, g) = \Delta H_{f}^{\circ} (H_{2}, g)= 0 kJ/mol[/tex]
→ [tex]\Delta H_{r}^{\circ} = \left [2\times \Delta H_{f}^{\circ} (H_{2}O, g) \right ] \neq \Delta H_{f}^{\circ} (Product, H_{2}O)[/tex]
d. 2H₂ (g) + O₂ (g) → 2H₂O (l)
[tex]\Delta H_{r}^{\circ} = \left [2\times \Delta H_{f}^{\circ} (H_{2}O, l) \right ] - \left [2\times \Delta H_{f}^{\circ} (H_{2}, g)+\Delta H_{f}^{\circ} (O_{2}, g)\right][/tex]
Here, the [tex]\Delta H_{f}^{\circ} (O_{2}, g) = \Delta H_{f}^{\circ} (H_{2}, g)= 0 kJ/mol[/tex]
→ [tex]\Delta H_{r}^{\circ} = \left [2\times \Delta H_{f}^{\circ} (H_{2}O, l) \right ] \neq \Delta H_{f}^{\circ} (Product, H_{2}O)[/tex]
e. 2C(s, graphite) + 2H₂(g) → C₂H₄ (g)
[tex]\Delta H_{r}^{\circ} = \left [\Delta H_{f}^{\circ} (C_{2}H_{4}, g) \right ] - \left [2\times \Delta H_{f}^{\circ} (C, s graphite)+2\times \Delta H_{f}^{\circ} (H_{2}, g)\right][/tex]
Here, the [tex]\Delta H_{f}^{\circ} (C, s, graphite) = \Delta H_{f}^{\circ} (H_{2}, g)= 0 kJ/mol[/tex]
→ [tex]\Delta H_{r}^{\circ} = \left [\Delta H_{f}^{\circ} (C_{2}H_{4}, g) \right ] = \Delta H_{f}^{\circ} (Product, C_{2}H_{4})[/tex]