Respuesta :

Answer:[tex]6-\sqrt{21} , 6+\sqrt{21}[/tex]

Step-by-step explanation:

For [tex]x^{2} =-12x+15[/tex], so [tex]x^{2} +12x-15=0[/tex] We apply the quadratic equation formula:[tex](-b+-\sqrt{b^{2}-4*a*c })/2*a[/tex], where [tex]a=1, b=12 y c=-15[/tex]. so;

[tex](12+-\sqrt{12^{2} -4*1*(-15)} )/(2*1) = (12+-\sqrt{144-60})/2 = (12+-\sqrt{84})/2[/tex], but [tex]\sqrt{84} = 2\sqrt{21}[/tex] We have that:

[tex]Solution : (6-\sqrt{21} , 6+\sqrt{21} )[/tex]