Answer:
[tex]\frac{m_i}{m_f}=2.7182[/tex]
[tex]\frac{m_i}{m_f}=1096.633[/tex]
Explanation:
[tex]m_i[/tex] = Initial mass of rocket
[tex]m_f[/tex] = Final mass of rocket
u = Initial velocity
[tex]v_r[/tex] = Relative velocity
v = Velocity
From the rocket equation
[tex]v=u+v_{r}\ln {\frac {m_{i}}{m_{f}}}\\\Rightarrow v=v_{r}\ln {\frac {m_{i}}{m_{f}}}\\\Rightarrow \frac{m_i}{m_f}=e^{\frac{v}{v_{r}}}\\\Rightarrow \frac{m_i}{m_f}=e^{\frac{v}{v}}=e^1\\\Rightarrow \frac{m_i}{m_f}=2.7182[/tex]
[tex]\frac{m_i}{m_f}=2.7182[/tex]
when [tex]v=7v_r[/tex]
[tex]v=v_{r}\ln {\frac {m_{i}}{m_{f}}}\\\Rightarrow \frac{m_i}{m_f}=e^{\frac{v}{v_{r}}}\\\Rightarrow \frac{m_i}{m_f}=e^{\frac{7v_r}{v_r}}=e^7\\\Rightarrow \frac{m_i}{m_f}=1096.633[/tex]
[tex]\frac{m_i}{m_f}=1096.633[/tex]