alusaa
contestada

Which is equivalent to
16 Superscript three-fourths x ?
Rootindex 4 StartRoot 16 EndRoot Superscript 3x
Rootlndex 4 x StartRoot 16 EndRoot cubed
3 Rootindex 3 StartRoot 16 End Root Superscript 4 x
E
Rootindex 3 x StartRoot 16 End Root Superscript 4

Respuesta :

Answer:

the answer is 4

Step-by-step explanation:

Answer:

A) [tex]16^\frac{3}{4}=\sqrt[4]{16^3}[/tex]

Step-by-step explanation:

1) According to Exponents Law, whenever we have a number raised to a fraction this is the same as having a root of its number whose index is the denominator, raised to the numerator.

[tex]n^{\frac{a}{b}}=\sqrt[b]{n^{a}}\\16^{\frac{3}{4}}=\sqrt[4]{16^{3}}=\sqrt[4]{4096}=\sqrt[4]{2^{12}}=8[/tex]

Then [tex]16^\frac{3}{4}=\sqrt[4]{16^3}[/tex]