[tex]\displaystyle\int_0^5\int_x^5\sin(y^2)\,\mathrm dy\,\mathrm dx[/tex]
The integration region is the triangle in the [tex]x,y[/tex] plane bounded by the lines [tex]y=5[/tex], [tex]y=x[/tex], and [tex]x=0[/tex]. Reversing the order of integration, this is equal to
[tex]\displaystyle\int_0^5\int_0^y\sin(y^2)\,\mathrm dx\,\mathrm dy=\int_0^5y\sin(y^2)\,\mathrm dy[/tex]
For the remaining integral, let [tex]u=y^2\implies\mathrm du=2y\,\mathrm dy[/tex]:
[tex]\displaystyle\int_0^5y\sin(y^2)\,\mathrm dy=\frac12\int_0^{25}\sin u\,\mathrm du=-\frac12\cos u\bigg|_0^{25}=\frac{1-\cos(25)}2[/tex]