Respuesta :

Answer:

[tex]\textbf{Option C}\\[/tex]

Step-by-step explanation:

[tex]\textup{You have to substitute values of x from the table and see if it satisfies the given condition.}\\\textup{For example in option A, $(-2,-2)$ is the point given.}\\\textup{Substitute $x = -2 $ in $y = -x^2 + 3x $}\\\textup{We get $y = -10 \ne -2$. Eliminate option $A$ and $B$ from this.}\\[/tex]

[tex]\textup{Now we will check for $x = 1$ as the values of $y$ differ in options $C$ and $D$.}\\$i.e., $ \textup{For} $x = 1, y = - {1}^2 + 3(1) $\\$\implies y = 2 \ne 4$, \textup{eliminating Option $D$.}\\\textup{Also substitute other values for $x = -1, 0, 2$ and the answer can be verified.}\\\textup{\textbf{Hence, option $C$ will fit this function.}}[/tex]