Answer:
I=0.41A
Explanation:
Given,
Density:
[tex]\rho_w = 1000Kg/m^3[/tex]
Heat vaporization
[tex]H_v=2256kJ/Kg=2256*10^3J/Kg[/tex]
[tex]A=16.7*10^{-5}m^2[/tex]
[tex]L=15.2cm[/tex]
[tex]\rho=172 \Omega[/tex]
[tex]t=2.09ms[/tex]
Then we can calculate the mass
[tex]m=\rho_w*A*L = (1000)(16.7*10^{-5})(0.152)= 0.02538Kg[/tex]
We know that,
Heat vaporization, [tex]H_v = \frac{\upsilon}{m}[/tex]
[tex]\upsilon=Hv*m[/tex]
[tex]\upsilon = 57257.28J[/tex]
Rate of energy transference,
[tex](1) P=\frac{\upsilon}{t}[/tex]
[tex](2) P=I*v=I^2*R[/tex]
Where [tex]R= \rho\frac{L}{A}[/tex]
Note that [tex]\rho=R*(A/L)[/tex]
So,
[tex]I^2*\rho \frac{L}{A} = \frac{H_v\rho_w A L }{t}[/tex]
[tex]I=\sqrt{\frac{A^2H_v \rho_w}{\rho t}}[/tex]
[tex]I= \frac{\sqrt{(16.7*10^{-5})^2(2256*10^3)(1000)}}{(172)(2.09)}[/tex]
[tex]I=0.41A[/tex]