Respuesta :

Answer:

[tex]D=9\sqrt{2}\ in[/tex]

Step-by-step explanation:

step 1

Find out the length side of the square

we know that

The perimeter pf the square is equal to

[tex]P=4b[/tex]

where

b is the length side of the square

we have

[tex]P=36\ in[/tex]

so

[tex]36=4b[/tex]

Solve for b

[tex]b=36/4\\b=9\ in[/tex]

step 2

Find out the length of the diagonal applying the Pythagoras Theorem

Let

D -----> the length of the diagonal of the square

b ----> the length side of the square

we have that

[tex]D^2=b^2+b^2[/tex]

we have

[tex]b=9\ in[/tex]

substitute

[tex]D^2=9^2+9^2[/tex]

[tex]D^2=2(81)[/tex]

[tex]D=\sqrt{162}\ in[/tex]

Simplify

[tex]D=9\sqrt{2}\ in[/tex]