Respuesta :

value of x is [tex]x=\frac{3}{11}[/tex] and value of y is [tex]y=\frac{-7}{11}[/tex]

Step-by-step explanation:

We need to solve the system of equations by elimination

[tex]y=5x-2\,\,\,(1) \\3x-5y=4\,\,\,(2)[/tex]

Solving the systems:

Rearranging equation(1)

[tex]-5x+y=-2[/tex]

Multiply equation(1) with 5 and add with equation 2

[tex]-25x+5y=-10\\\,\,3x-5y=4\\--------\\-22x=-6\\x=\frac{-6}{-22}\\x=\frac{3}{11}[/tex]

So, value of x is [tex]x=\frac{3}{11}[/tex]

Now finding value of y

Multiply eq(1) with 3 and eq(2) with 5 and add both equations

[tex]-15x+3y=-6\\15x-25y=20\\-------\\-22y=14\\y=\frac{14}{-22}\\y=\frac{-7}{11}[/tex]

So, value of y is [tex]y=\frac{-7}{11}[/tex]

Keywords: System of Equations

Learn more about System of Equations at:

  • brainly.com/question/13168205
  • brainly.com/question/2115716
  • brainly.com/question/3739260

#learnwithBrainly