Respuesta :
[tex](4a^{4b} )^{2} [/tex]
Apply exponent rule : [tex](a*b)^n = a^nb^n[/tex]
[tex]4^2(a ^{4b})^2 [/tex]
[tex](a ^{4b} )^2 [/tex]
Apply exponent rule :
[tex](a^b)^c= a ^{b*c} [/tex]
[tex]= a ^{8b} [/tex]
[tex]= 4^2 = 16[/tex]
[tex]=\ \textgreater \ 16 a ^{8b} [/tex]
hope this helps!
Apply exponent rule : [tex](a*b)^n = a^nb^n[/tex]
[tex]4^2(a ^{4b})^2 [/tex]
[tex](a ^{4b} )^2 [/tex]
Apply exponent rule :
[tex](a^b)^c= a ^{b*c} [/tex]
[tex]= a ^{8b} [/tex]
[tex]= 4^2 = 16[/tex]
[tex]=\ \textgreater \ 16 a ^{8b} [/tex]
hope this helps!
Answer:
The simplified expression is [tex]16a^{8b}[/tex]
Step-by-step explanation:
we need to simplify the expression [tex](4a^{4b})^{2}[/tex]
[tex](4a^{4b} )^{2}[/tex]
Using exponent rule : [tex](a\times b)^{n} = a^{n}b^{n}[/tex]
[tex]4^{2}(a ^{4b})^{2}[/tex]
[tex]16(a ^{4b} )^2[/tex]
Apply exponent rule :
[tex](a^b)^c= a ^{b*c}[/tex]
[tex](a ^{4b} )^2= a ^{8b} [/tex]
[tex]16a^{8b}[/tex]
Hence, simplified expression is [tex]16a^{8b}[/tex]