What is the area of the rectangle?



40 units²
45 units²
50 units²
55 units²

A rectangle is graphed on a coordinate plane. The horizontal x-axis ranges from negative 10 to 10 in increments of 1. The vertical y-axis ranges from negative 10 to 10 in increments of 1. The vertices of the rectangle lie on begin ordered pair negative 5 comma 5 end ordered pair and begin ordered pair negative 1 comma 7 end ordered pair and begin ordered pair 4 comma negative 3 end ordered pair and begin ordered pair 0 comma negative 5 end ordered pair.

Respuesta :

Answer:

[tex]50\ units^{2}[/tex]

Step-by-step explanation:

Plot the figure to better understand the problem

see the attached figure

we know that

If the figure is a rectangle          

then

[tex]AB=CD \\AD=BC[/tex]

The area of the rectangle is equal to

[tex]A=B*h[/tex]

 where  

B is the base  

h is the height  

the base B is equal to the distance AB

the height h is equal to the distance AD  

Step 1

Find the distance AB

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

[tex]A(-5,5)\\B(0,-5)[/tex]

substitute the values

[tex]d=\sqrt{(-5-5)^{2}+(0+5)^{2}}\\d=\sqrt{(-10)^{2}+(5)^{2}}\\dAB=\sqrt{125}\ units[/tex]

Step 2

Find the distance AD

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

[tex]A(-5,5)\\D(-1,7)[/tex]

substitute the values

[tex]d=\sqrt{(7-5)^{2}+(-1+5)^{2}}\\d=\sqrt{(2)^{2}+(4)^{2}}\\dAD=\sqrt{20}\ units[/tex]

Step 3

Find the area of the rectangle

[tex]A=AB*AD[/tex]

we have

[tex]dAB=\sqrt{125}\ units\\dAD=\sqrt{20}\ units[/tex]

substitute

[tex]A=\sqrt{125}*\sqrt{20}\\A=\sqrt{2,500}\\A=50\ units^{2}[/tex]

Ver imagen calculista