Analyze the end behavior of both functions.
a. f(x) = x, g(x) = 1 / x
b. f(x) = x3, g(x) = 1 / x3
c. f(x) = x2, g(x) = 1 / x2
d. f(x) = x4, g(x) = 1 / x4
e. f(x) = x − 1, g(x) = 1 / x − 1
f. f(x) = x + 2, g(x) = 1 / x + 2
g. f(x) = x2 − 4, g(x) = 1 / x2 − 4

Respuesta :

Answer:

The end behaviour of all the functions is same ie they all tend to zero.

Step-by-step explanation:

In every option the function f(x)is a linear function which tends to infinity at the  end(as x tends to infinity).Now the function g(x)in every option is just the reciprocal of f(x).As we all know

[tex]\lim_{n \to \infty} f(x)=[/tex]∞

then

[tex]\lim_{n \to \infty} 1/f(x)=0[/tex]