A stone whirled at the end of the a rope 30cm long, makes 10 complete resolution in 2 seconds Find: A. The angular velocity in radians b. the linear speed c. the distance covered in 5 seconds​

Respuesta :

Answers:

A: Angular velocity [tex]\omega=31.40 \frac{r a d}{s}[/tex]

B: Linear velocity [tex]v=9.42 \frac{m}{s}[/tex]

C: Linear Distance [tex]d=47.1 \mathrm{m}[/tex]

Given:

Radius of the rope r=30cm=0.3m

Angular distance[tex]\Delta \theta[/tex]=10 revolutions

Time taken t=2seconds

To find:

A: Angular velocity in radians

B: Linear speed

C: Distance covered in 5 seconds

Step by Step Explanations:

Solution:

A: Angular velocity in radians;

According to the formula, Angular velocity can be calculated as

Angular Velocity = angular distance/ time

[tex]\omega=\Delta \theta / \Delta t[/tex]

Where [tex]\omega[/tex]=Angular velocity

[tex]\Delta \theta[/tex]=Angular distance=10 revolutions

Changing revolutions to radians multiply with [tex]2 \pi[/tex], so that we get

[tex]=10 \times 2 \pi[/tex]

[tex]=10 \times 2(3.14)[/tex]  

=62.80 rad/rev

[tex]\Delta t[/tex] =Change in time

Substitute the known values in the above equation we get

[tex]\omega[/tex]=62.80 / 2  

[tex]\omega=31.40 \frac{r a d}{s}[/tex]

B. Linear speed of the rope;

As per the formula

Linear speed = angular speed × radius

[tex]v=\omega \times r[/tex]  

Where [tex]\omega[/tex]=Angular velocity

v=Linear speed of the rope

r=Radius of the rope

Substitute the known values in the above equation we get

[tex]v=31.40 \times 0.30[/tex]

[tex]v=9.42 \frac{m}{s}[/tex]

C. Dsitance covered in 5 seconds;

Linear distance = linear speed × time

[tex]d=v \times t[/tex]

Where d= Linear distance of the rope

v=Linear speed of the rope

t=Time taken

Substitute the known values in the above equation we get

[tex]d=9.42 \times 5[/tex]

[tex]d=47.1 \mathrm{m}[/tex]

Result:

Thus A: Angular velocity of the rope [tex]\omega=31.40 \frac{r a d}{s}[/tex]

B Linear speed of the rope [tex]v=9.42 \frac{m}{s}[/tex]

C: Distance covered in 5 seconds [tex]d=47.1 \mathrm{m}[/tex]