Respuesta :
Answer:
Number of widgets A and C are 2 each, widgets B are 5.
Step-by-step explanation:
Let [tex]x[/tex] be the number of widgets A, [tex]y[/tex] be the number of widgets B and [tex]z[/tex] be the number of widgets C.
As per the question,
On a given day, total 9 widgets are produced. So,
[tex]x+y+z=9[/tex]
Cost for 1 widget A is $3. So, cost of [tex]x[/tex] widgets A is 3x.
Cost for 1 widget B is $2. So, cost of [tex]y[/tex] widgets A is 2y.
Cost for 1 widget C is $1. So, cost of [tex]z[/tex] widgets A is z.
Now, total cost of the widgets is $18. So,
[tex]3x+2y+z=18[/tex]
Also, widget B is one more than the sum of widgets A and C. So,
[tex]y=x+z+1[/tex]
Now, we have 3 equations and 3 unknowns.
[tex]x+y+z=9[/tex]
[tex]3x+2y+z=18[/tex]
[tex]y=x+z+1[/tex]⇒[tex]x+z=y-1[/tex]
Now, using the first and third equation, we get
[tex]y+y-1=9\\2y=10\\y=5[/tex]
Plug in 5 for [tex]y[/tex] in the first 2 equations. This gives,
[tex]x+5+z=9[/tex]⇒[tex]x+z=4[/tex]
[tex]3x+2(5)+z=18[/tex]⇒[tex]3x+z=8[/tex]
Subtracting the above 2 equations, we get,
[tex]x-3x+z-z=4-8\\-2x=-4\\x=2[/tex]
Using the value of x in the above equation, we find z.
[tex]x+z=4\\2+z=4\\z=2[/tex]
Therefore, [tex]x=2,y=5,z=2[/tex]
Hence, number of widgets A and C are 2 each, widgets B are 5.