Respuesta :

Answer:

The standard form of [tex]\frac{6 \times 10^{2}}{3 \times 10^{-5}}[/tex] is 20,00,0000

Solution:

Given that [tex]\frac{6 \times 10^{2}}{3 \times 10^{-5}}[/tex] ---- eqn 1

To write[tex]\frac{6 \times 10^{2}}{3 \times 10^{-5}}[/tex] in standard form,

We know that [tex]\bold{\frac{1}{a^{-m}} = a^{m}}[/tex] .So [tex]\frac{1}{10^{-5}}[/tex]  becomes [tex]10^{5}[/tex].

Now eqn 1 becomes,

[tex] = \frac{6 \times 10^{2}}{3} \times 10^{5}[/tex] ----- eqn 2

We know that [tex]\bold{a^{m} \times a^{n}=a^{m+n}}[/tex], so [tex]10^{2} \times 10^{5} = 10^{7}[/tex]

Now eqn 2 becomes,

[tex]= \frac{6}{3} \times 10^{7}[/tex]

[tex]= 2 \times 10^{7}[/tex] ---- eqn 3

Expanding [tex]10^{7}[/tex]:  

Here 10 is the base term and 7 is the exponent value. So base term 10 is multiplied by itself 7 times.

[tex]10^{7} = 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10[/tex]

Now eqn 3 becomes,

[tex]= 2 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10[/tex]

= 20,00,0000  

Hence the standard form of [tex]\frac{6 \times 10^{2}}{3 \times 10^{-5}}[/tex] is 20,00,0000

Answer:

2x10^7

Step-by-step explanation:

Thankyou