Find F · dr C for the given F and C. F = x2 i + y2 j and C is the top half of a circle of radius 3 starting at the point (3, 0) traversed counterclockwise. (a) Parameterize the path C in the usual way for circles. r (t) = (b) Set up the integral in terms of t only. F · dr C = dt (c) Evaluate the integral in part (b).

Respuesta :

a. Take

[tex]\vec r(t)=\sqrt3\cos t\,\vec\imath+\sqrt3\sin t\,\vec\jmath[/tex]

with [tex]0\le t\le\pi[/tex].

b. The line integral reduces to

[tex]\displaystyle\int_C\vec F\cdot\mathrm d\vec r=\int_0^\pi(3\cos^2t\,\vec\imath+3\sin^2t\,\vec\jmath)\cdot(-\sqrt3\sin t\,\vec\imath+\sqrt3\cos t\,\vec\jmath)\,\mathrm dt[/tex]

[tex]=\displaystyle3\sqrt3\int_0^\pi(\sin^2t\cos t-\cos^2t\sin t)\,\mathrm dt[/tex]

c.

[tex]\displaystyle3\sqrt3\left(\int_0^\pi\sin^2t\cos t\,\mathrm dt-\int_0^\pi\cos^2t\sin t\,\mathrm dt\right)[/tex]

[tex]=\displaystyle3\sqrt3\left(\int_0^0u^2\,\mathrm du+\int_1^{-1}v^2\,\mathrm dv\right)[/tex]

(where [tex]u=\sin t[/tex] and [tex]v=\cos t[/tex])

[tex]=\displaystyle-6\sqrt3\int_0^1v^2\,\mathrm dv=\boxed{-2\sqrt3}[/tex]