Find the prime factorization for the number m (if possible) that makes each of the following true. If no number is possible, explain why not.

A. 2^3 x 19^5 x 23^4 = 2^3 x 19^5 x 46 x m

Respuesta :

Answer:

Is not possible to find a prime factorization for m.

Step-by-step explanation:

if

[tex]2^3 . 19^5 . 23^4 = 2^3 . 19^5 . 46 . m[/tex]

then

[tex]m=\frac{2^3. 19^5 . 23^4}{2^3 . 19^5 . 46 }=\frac{2^3. 19^5 . 23^4}{2^3 . 19^5 . 2.23 }=\frac{23^3}{2}[/tex]

So m is not an integer, hence it cannot be decomposed in prime factors.