Respuesta :
Answer:
New Momentum of Ball B[tex]=13.2 \frac{\mathrm{kgm}}{\mathrm{s}}[/tex]
Explanation:
Given:
Mass of Ball A=1kg
Mass of Ball B= 2kg
Mass of Ball C=5kg
Mass of Ball D=7kg
Velocities of A=B=C=D=2.2[tex]\frac{m}{s}[/tex]
Momentum of Ball A=2.2[tex]\frac{k g m}{s}[/tex]
Momentum of Ball B=4.4 [tex]\frac{k g m}{s}[/tex]
Momentum of Ball C=11[tex]\frac{k g m}{s}[/tex]
Momentum of Ball D=15[tex]\frac{k g m}{s}[/tex]
To Find:
Change in Momentum When of Ball B gets tripled
Solution:
Though all balls have same velocity, thus we get
Velocities of A=B=C=D=2.2[tex]\frac{m}{s}[/tex]
Initial Momentum of Ball B=4.4[tex]\frac{k g m}{s}[/tex]
If the Mass of Ball B gets tripled;
We get New Mass of Ball B=3×Actual Mass of the ball
=3×2=6kg
Thus we get Mass of Ball B=6kg
According to the formula,
Change in momentum of Ball B [tex]\Delta p=m \times \Delta v[/tex]
Where [tex]\Delta p[/tex]=change in momentum
m=mass of the ball B
[tex]\Delta v[/tex]=change in velocity ball B
And [tex]\Delta v=v,[/tex] since all balls, have same velocity
Thus the above equation, changes to
[tex]\Delta p=m \times v[/tex]
Substitute all the values in the above equation we get
[tex]\Delta p=6 \times 2.2[/tex]
[tex]=13.2 \frac{\mathrm{kgm}}{\mathrm{s}}[/tex]
Result:
Thus the New Momentum of ball B[tex]=13.2 \frac{\mathrm{kgm}}{\mathrm{s}}[/tex]