Respuesta :
Answer:
[tex]\boxed{6.432 \times 10^{5}}[/tex]
Explanation:
We use Scientific Notation as a special way of writing numbers. It is an amazing way to represent both big and small numbers, like this:
[tex]800 \rightarrow 8 \times 10^2[/tex]
Or:
[tex]5,700,000,000 \rightarrow 5.7 \times 10^9[/tex]
So in this exercise, we need to us Associative Property and the Product of Powers Property to find the result of:
[tex](9.6 \times 10^3) \times (6.7 \times 10^2)[/tex]
- By Associative Property:
[tex](9.6 \times 10^3) \times (6.7 \times 10^2)=(9.6 \times 6.7 \times 10^3 \times 10^2 \\ \\[/tex]
[tex](9.6 \times 10^3) \times (6.7 \times 10^2)=(9.6 \times 6.7 \times 10^3 \times 10^2) \\ \\ = 64.32 \times 10^3 \times 10^2[/tex]
- By Product of Powers Property:
Same base 10 and adding exponents:
[tex]64.32 \times 10^{3+2}=64.32 \times 10^{5} \\ \\ Arranging:\\ \\ \boxed{6.432 \times 10^{6}}[/tex]