Laurel, Inc., and Hardy Corp. both have 7 percent coupon bonds outstanding, with semiannual interest payments, and both are priced at par value. The Laurel, Inc., bond has three years to maturity, whereas the Hardy Corp. bond has 16 years to maturity.If interest rates suddenly rise by 2 percent, what is the percentage change in the price of each bond?If rates were to suddenly fall by 2 percent instead, what would be the percentage change in the price of each bond?

Respuesta :

Answer:

Laurel: price will decrease by 4.73% if the rates increases by 2%

and it will increase by 5.66% if the rates decreases by 2%

Hardy:

+22.28% if rate fall by 2%

-16.05% if rate decrease by 2%

Explanation:

To solve for percentage we use $1 as face value

We solve calculating the preent value of the coupon payment using the present value of an ordinary annuity formula

and add it with the present value of maturity which is calculate with the present value of lump sum

Laurel Inc:

[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]  

C 0.0350

time 6.0000

rate 0.0450

[tex]0.035 \times \frac{1-(1+0.045)^{-6} }{0.045} = PV\\[/tex]  

PV 0.1805

 

[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]  

Maturity  1.00

time   3.00  

rate  0.09

[tex]\frac{1}{(1 + 0.09)^{3} } = PV[/tex]  

PV   0.77  

 

PV c $0.1805  

PV m  $0.7722  

Total $0.9527  

0.9527 - 1 =  - 0.0473

a decrease of 4.73 if rate increase by 2%

[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]  

C 0.0350

time 6.0000

rate 0.0250

[tex]0.035 \times \frac{1-(1+0.025)^{-6} }{0.025} = PV\\[/tex]  

PV 0.1928

 

[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]  

Maturity  1.00

time   3.00  

rate  0.05

[tex]\frac{1}{(1 + 0.05)^{3} } = PV[/tex]  

PV   0.86  

 

PV c $0.1928  

PV m  $0.8638  

Total $1.0566  

5.66% increase if rates fall 2%

For Hardy Corp we do the same procedure

[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]  

C 0.0350

time 32.0000

rate 0.0250

[tex]0.035 \times \frac{1-(1+0.025)^{-32} }{0.025} = PV\\[/tex]  

PV 0.7647

 

[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]  

Maturity  1.00

time   16.00  

rate  0.05

[tex]\frac{1}{(1 + 0.05)^{16} } = PV[/tex]  

PV   0.46  

 

PV c $0.7647  

PV m  $0.4581  

Total $1.2228  

22.28% if rate fall by 2%

[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]  

C 0.0350

time 32.0000

rate 0.0450

[tex]0.035 \times \frac{1-(1+0.045)^{-32} }{0.045} = PV\\[/tex]  

PV 0.5876

 

[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]  

Maturity  1.00

time   16.00  

rate  0.09

[tex]\frac{1}{(1 + 0.09)^{16} } = PV[/tex]  

PV   0.25  

 

PV c $0.5876  

PV m  $0.2519  

Total $0.8395  

0.8395 - 1 = 0.1605