contestada

a.Find a formula for
1/1×2+1/2×3+...+1/n(n+1)
by examining the values of this expression for small values of n.
b.Prove the formula you conjectured in part (a)

Respuesta :

a. Notice that

1/(1*2) = 1/2 = 1 - 1/2

1/(2*3) = 1/6 = 1/2 - 1/3

1/(3*4) = 1/12 = 1/3 - 1/4

and so on, which suggests the n-th term of the sum can be written as

[tex]\dfrac1{n(n+1)}=\dfrac1n-\dfrac1{n+1}[/tex]

Then the sum itself is telescoping:

[tex]\dfrac1{1\cdot2}+\dfrac1{2\cdot3}+\dfrac1{3\cdot4}+\cdots+\dfrac1{n(n+1)}[/tex]

[tex]=\left(1-\dfrac12\right)+\left(\dfrac12-\dfrac13\right)+\left(\dfrac13-\dfrac14\right)+\cdots+\left(\dfrac1n-\dfrac1{n+1}\right)[/tex]

[tex]=1-\dfrac1{n+1}[/tex]

b. The proof is trivial:

[tex]\dfrac1n-\dfrac1{n+1}=\dfrac{n+1}{n(n+1)}-\dfrac n{n(n+1)}=\dfrac{n+1-n}{n(n+1)}=\dfrac n{n+1}[/tex]

so the formula found in (a) is correct.

The formula for series [tex]\mathbf{\frac{1}{1 \times 2},\frac{1}{2 \times 3}+...+\frac{1}{n(n+1)}}[/tex] is the sum of the series.

The expression for small n values is [tex]\mathbf{S_n = \frac{n}{n+1}}[/tex]

The series is given as:

[tex]\mathbf{\frac{1}{1 \times 2},\frac{1}{2 \times 3}+...+\frac{1}{n(n+1)}}[/tex]

(a) The expression for small n values

The series can be split as follows:

[tex]\mathbf{T_1 = \frac{1}{1 \times 2} = \frac{1}{1} - \frac{1}{2}}[/tex]

[tex]\mathbf{T_2 = \frac{1}{2 \times 3} = \frac{1}{2} - \frac{1}{3}}[/tex]

Express 3 as 2 + 1

[tex]\mathbf{T_2 = \frac{1}{2 \times (2 + 1)} = \frac{1}{2} - \frac{1}{2 + 1}}[/tex]

Express 2 as n

[tex]\mathbf{T_n = \frac{1}{n \times (n+1)} = \frac{1}{n} - \frac{1}{n + 1}}[/tex]

So, the sum is represented as:

[tex]\mathbf{S_n = (\frac{1}{1} - \frac{1}{2}) + (\frac 12 - \frac 13) +..........+(\frac 1n - \frac{1}{n+1})}[/tex]

Simplify

[tex]\mathbf{S_n = (\frac{1}{1} - \frac{1}{n+1})}[/tex]

[tex]\mathbf{S_n = 1 - \frac{1}{n+1}}[/tex]

Take LCM

[tex]\mathbf{S_n = \frac{n +1 - 1}{n+1}}[/tex]

[tex]\mathbf{S_n = \frac{n}{n+1}}[/tex]

Hence, the expression for small n values is [tex]\mathbf{S_n = \frac{n}{n+1}}[/tex]

(b) Prove (a)

Recall that:

[tex]\mathbf{T_n = \frac{1}{n} - \frac{1}{n + 1}}[/tex]

Take LCM

[tex]\mathbf{T_n = \frac{n + 1 - n}{n + 1}}[/tex]

Rewrite as:

[tex]\mathbf{T_n = \frac{n - n+ 1 }{n + 1}}[/tex]

Evaluate like terms

[tex]\mathbf{T_n = \frac{ 1 }{n + 1}}[/tex]

The expression n times is:

[tex]\mathbf{S_n = \frac{ 1 }{n + 1 }\times n}[/tex]

[tex]\mathbf{S_n = \frac{ n }{n + 1 }}[/tex]

Hence, the expression in (a) has been proved.

Read more about series at:

https://brainly.com/question/12429779