What is the equilibrium constant for the reaction:

SO2 (g) + NO2 (g) â SO3 (g) + NO (g)

At 298 K? Use the following data: R=8.314 J/(K.mol)

Substance SO2 (g) SO3 (g) NO2 (g) NO (g)

ÎGo (kJ/mol) -300.2 -371 51 86.6

a) 6.8 . 10-7

b) 1.5 . 106

c) 1.014

d) 0.986

e) -35.2

Respuesta :

Answer:

The correct answer is option b.

Explanation:

[tex]SO_2 (g)+NO_2 (g)\rightarrow SO_3 (g)+NO (g)[/tex]

The equation used to calculate Gibbs free change is of a reaction is:  

[tex]\Delta G^o_{rxn}=\sum [\Delta G^o_f(product)]-\sum [\Delta G^o_f(reactant)][/tex]

The equation for the enthalpy change of the above reaction is:

[tex]\Delta G^o_{rxn}=(\Delta G^o_f_{(SO_3(g))}+\Delta G^o_f_{(NO(g))})-(\Delta G^o_f_{(SO_2(s))}+G^o_f_{(NO_2(g))})[/tex]

We are given:

[tex]\Delta G^o_f_{(SO_2(s))}=-300.2 kJ/mol\\\Delta G^o_f_{(NO_2(g))}=51 kJ/mol[/tex]

[tex]\Delta G^o_f_{(SO_3(s))}=-371 kJ/mol\\\Delta G^o_f_{(NO(g))}=86.6kJ/mol[/tex]

Putting values in above equation, we get:

[tex]\Delta G^o_{rxn}=(-371 kJ/mol+86.6kJ/mol)-(-300.2 kJ/mol+51 kJ/mol)=-35.2 kJ/mol[/tex]

To calculate the [tex]K_c[/tex] (at 298 K) for given value of Gibbs free energy, we use the relation:

[tex]\Delta G^o=-RT\ln K_c[/tex]

where,

[tex]\Delta G^o[/tex] = Gibbs free energy = -35.2 kJ/mol = -35200 J/mol  (Conversion factor: 1kJ = 1000J)

R = Gas constant = [tex]8.314J/K mol[/tex]

T =Temperature =298K[/tex]

[tex]K_1[/tex] = equilibrium constant at 298 k;

Putting values in above equation, we get:

[tex]-35200 J/mol=-(8.314J/Kmol)\times 298K\times \ln K_c\\\\K_c=1.479\times 10^6\approx 1.5\times 10^6[/tex]

Hence, correct answer is option b.