Respuesta :
Answer:
[tex]f(x); (-7, 0)[/tex]
Step-by-step explanation:
The zeros of a function are those values where the graph of the function touches the x-axis. First, we have [tex]f(x)[/tex] which is a parabola defined by the following equation:
[tex]f(x)=3x^2+18x-21[/tex]
By using the quadratic formula, we can get the zeros, therefore:
[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a} \\ \\ a=3, \ b=18, \ c=-21 \\ \\ \\ x=\frac{-18\pm \sqrt{(18)^2-4(3)(-21)}}{2(3)} \\ \\ x=\frac{-18\pm \sqrt{324+252}}{6} \\ \\ x_{1}=1 \ and \ x_{2}=-7[/tex]
So the zeros of [tex]f(x)[/tex] are [tex]x_{1}=1 \ and \ x_{2}=-7[/tex]. The zero of [tex]g(x)[/tex] is just one and can be determined from the table, which is [tex]x=19[/tex]. So we can see that [tex]f(x)[/tex] is the function that has the smallest zero, which is:
[tex]\boxed{f(x); \ (-7, 0)}[/tex]
Answer:
The smallest zero is (-7,0) and correspond to f(x)
Step-by-step explanation:
x g(x) difference of g(x) difference of differences
18 −17
19 0 0 - (-17) = 17
20 19 19 - 0 = 19 19 - 17 = 2
21 40 40 - 19 =21 21 - 19 = 2
22 63 63 - 40 =23 23 - 21 = 2
Then, g(x) is a quadratic function. The regression gives: g(x) = x^2 - 20x +19 (I made it in Excel, you can use any similar software or a calculator).
Using the quadratic formula, the zeros of g(x) are:
[tex]x = \frac{20 \pm \sqrt{(-20)^2 - 4(1)(19)}}{2(1)} [/tex]
[tex]x = \frac{20 \pm 18}{2} [/tex]
[tex]x_1 = \frac{20 + 18}{2} [/tex]
[tex]x_1 = 19 [/tex]
[tex]x_2 = \frac{20 - 18}{2} [/tex]
[tex]x_2 = 1 [/tex]
Coordinate of the zeros: (19, 0) and (1,0)
Using the quadratic formula, the zeros of f(x) are:
[tex]x = \frac{-18 \pm \sqrt{18^2 - 4(3)(-21)}}{2(3)} [/tex]
[tex]x = \frac{-18 \pm 24}{6} [/tex]
[tex]x_1 = \frac{-18 + 24}{6} [/tex]
[tex]x_1 = 1 [/tex]
[tex]x_2 = \frac{-18 - 24}{6} [/tex]
[tex]x_2 = -7[/tex]
Coordinate of the zeros: (-7, 0) and (1,0)