Answer:
0.922 A ,133.761 volt ,426.09 volt,438.90 volt
Explanation:
We have given resistance R=145 OHM
Inductance [tex]L=66 mH=66\times 10^{-3}H[/tex]
Capacitance [tex]C=0.3\mu F=0.3\times 106{-6}F[/tex]
Frequency f =1115 Hz
Emf equation = 190 sin(2πft)
So rms voltage [tex]=\frac{190}{\sqrt{2}}=\frac{190}{1.414}=134.37volt[/tex]
Inductive reactance [tex]X_L=\omega L=2\times \pi \times 1115\times 66\times 10^{-3}=462.1452ohm[/tex]
Capacitive reactance [tex]X_C=\frac{1}{\omega C}=\frac{1}{2\times 3.14\times 1115\times 0.3\times 10^{-6}}=476.04ohm[/tex]
Impedance [tex]Z=\sqrt{R^2+(X_C-X_L)^2}=\sqrt{145^2+(476.04-462.145)^2}=145.66ohm[/tex]
RMS current [tex]i=\frac{V}{Z}=\frac{134.37}{145.66}=0.922A[/tex]
RMS voltage across resistor = 0.922×145=133.761 volt
RMS voltage across inductor =0.922×462.145=426.09 volt
RMS voltage across capacitor =0.922×438.90 volt