Answer:
The output power is 24.68 mW.
Explanation:
Given that,
Power = 110 mW
Range = 38 m
Reduced range = 18 m
We need to calculate the power
Using formula of intensity
[tex]I=\dfrac{P}{A}[/tex]
[tex]I=\dfrac{P}{\pi r^2}[/tex]
As intensity is constant
[tex]P\propto r^2[/tex]
So, [tex]\dfrac{P_{1}}{P_{2}}=\dfrac{r_{1}^2}{r_{2}^{2}}[/tex]
[tex]P_{2}=\dfrac{r_{2}^2}{r_{1}^{2}}\timesP_{1}[/tex]
Put the value into the formula
[tex]P_{2}=\dfrac{18^2}{38^2}\times110\times10^{-3}[/tex]
[tex]P_{2}=24.68\times10^{-3}\ W[/tex]
[tex]P_{2}=24.68\ mW[/tex]
Hence, The output power is 24.68 mW.